Learning to rank

Results: 420



#Item
131Query expansion / Learning to rank / Language model / Search engine indexing / Query likelihood model / Relevance feedback / Document retrieval / Text Retrieval Conference / N-gram / Information science / Information retrieval / Science

Learning Concept Importance Using a Weighted Dependence Model Michael Bendersky Dept. of Computer Science University of Massachusetts

Add to Reading List

Source URL: www.wsdm-conference.org

Language: English - Date: 2009-12-30 01:09:20
132Information retrieval / IR evaluation / Precision and recall / Learning to rank / Confidence interval / Relevance / Ranking function / Standard error / Discounted cumulative gain / Statistics / Information science / Science

Measuring the Reusability of Test Collections Ben Carterette† , Evgeniy Gabrilovich‡ , Vanja Josifovski‡ , Donald Metzler‡ † Department of Computer & Information Sciences, University of Delaware, Newark, DE ‡

Add to Reading List

Source URL: www.wsdm-conference.org

Language: English - Date: 2009-12-30 01:36:32
133Learning to rank / Relevance feedback / Markov chain / N-gram / Web search query / Discounted cumulative gain / Markov model / Relevance / Bing / Information science / Information retrieval / Science

Beyond DCG: User Behavior as a Predictor of a Successful Search Ahmed Hassan ∗

Add to Reading List

Source URL: www.wsdm-conference.org

Language: English - Date: 2009-12-30 01:35:30
134Formal sciences / Information retrieval / Learning to rank / Regression analysis / Data mining / Error detection and correction / Errors and residuals in statistics / Support vector machine / Ranking function / Statistics / Machine learning / Measurement

Improving Quality of Training Data for Learning to Rank Using Click-Through Data Jingfang Xu Chuanliang Chen

Add to Reading List

Source URL: www.wsdm-conference.org

Language: English - Date: 2009-12-30 01:29:22
135Learning to rank / Science / Information / Political philosophy / Pairwise comparison / Psychometrics / Borda count

Multi-Prototype Label Ranking with Novel Pairwise-to-Total-Rank Aggregation

Add to Reading List

Source URL: astro.temple.edu

Language: English - Date: 2013-10-07 23:53:33
136Convex optimization / Machine learning / Operations research / Information retrieval / Learning to rank / Gradient boosting / Lagrange multiplier / Supervised learning / Interior point method / Mathematical optimization / Numerical analysis / Mathematical analysis

IntervalRank — Isotonic Regression with Listwise and Pairwise Constraints ∗ Taesup Moon, Alex Smola , Yi Chang, Zhaohui Zheng Yahoo! Labs

Add to Reading List

Source URL: www.wsdm-conference.org

Language: English - Date: 2009-12-30 01:26:32
137Internet search / Memory / Mental processes / Learning to rank / Machine learning / Storage / Web query classification / ACT-R / Web search query / Information science / Information retrieval / Science

Towards Recency Ranking in Web Search Anlei Dong Yi Chang Zhaohui Zheng Gilad Mishne Jing Bai Ruiqiang Zhang Karolina Buchner Ciya Liao Fernando Diaz

Add to Reading List

Source URL: www.wsdm-conference.org

Language: English - Date: 2009-12-30 01:06:54
138Learning to rank / Web search query / Web query classification / Discounted cumulative gain / Ranking / Bin / SQL / Search engine / Vector space model / Information science / Information retrieval / Ranking function

Ranking with Query-Dependent Loss for Web Search ∗ Jiang Bian College of Computing

Add to Reading List

Source URL: www.wsdm-conference.org

Language: English - Date: 2009-12-30 01:23:56
139Machine learning / Human–computer interaction / Learning to rank / Personalization / Level of measurement / Mixture model / Support vector machine / Statistics / Information science / Information retrieval

Non-linear Label Ranking for Large-scale Prediction of Long-Term User Interests Nemanja Djuric† , Mihajlo Grbovic† , Vladan Radosavljevic† , Narayan Bhamidipati† , Slobodan Vucetic‡ † Yahoo! Labs, Sunnyvale,

Add to Reading List

Source URL: astro.temple.edu

Language: English - Date: 2014-04-21 22:39:54
140Imaging / Object recognition / Pose / 3D pose estimation / Geometric hashing / Hough transform / Support vector machine / 3D modeling / 3D single object recognition / Computer vision / Artificial intelligence / Vision

MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Learning to Rank 3D Features Tuzel, O.; Liu, M-Y.; Taguchi, Y.; Raghunathan, A.U.

Add to Reading List

Source URL: www.merl.com

Language: English - Date: 2014-12-05 11:01:01
UPDATE